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Abstract
We develop the theory of the shift in the band edge caused by a strong exchange
interaction between charge carrier spins and the spins of the localized magnetic
electrons in ferromagnetic semiconductors. The one-particle Green function is
derived by using Matsubara’s temperature Green functions, and then an infinite-
order correction to the band edge due to the exchange interaction is determined
from the poles of the Green function. With the aid of the temperature- and
magnetic field-dependent spin polarization of the magnetic moments and the
spin correlation functions, the band edge can be calculated as a function of
temperature in various magnetic fields. The calculated results are compared
to experimental data in the cases of the ferromagnetic semiconductors EuO
and Ga1−xMnxAs over a wide temperature range. For these materials the
values 0.223 and 1.4 eV are evaluated for the exchange interaction parameter,
respectively. A new feature is found in the ferromagnetic region, as a result of
the exceptionally strong exchange interaction in Ga1−xMnxAs, i.e., a blue-shift
in the band edge with decreasing temperature or with increasing magnetic field.

1. Introduction

During the last few decades, magnetic semiconductors such as Eu chalcogenides (EuO, EuS,
EuSe, and EuTe) and spinels of the type CdCr2Se4 have been a focus of intensive scientific
research. The unusual electrical, optical, and magnetic properties of these ‘first-generation’
magnetic semiconductors had already been investigated thoroughly in the

1970s [1]. Later, due to difficulties in fabricating these materials, the interest was focused
more on diluted magnetic semiconductors (DMSs) such as Cd1−xMnxTe and Zn1−xMnxTe,
where the magnetic properties could be controlled by altering the magnetic Mn-ion content [2].
The DMSs could be called magnetic semiconductors of ‘the second generation’.
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The reason for the wide interest in the above-mentioned materials is that the magnetic
semiconductors bridge between the physics of magnetism and the physics of semiconductors.
One of the most attractive features found in these materials is a strong exchange interaction
between the itinerant charge carriers and the localized magnetic moments. This interaction
is manifested, e.g., as strong temperature and magnetic field dependences of the optical
and electrical properties of the magnetic semiconductors. For instance, the ferromagnetic
semiconductors display a strong red-shift in the fundamental optical absorption edge below
the Curie temperature TC or in high magnetic fields [1]. Also, in the resistivity a prominent
peak at TC has been found, which then disappears in sufficiently high magnetic fields, showing
a large negative magnetoresistance.

Heavily Mn-doped GaAs is a recently found ferromagnetic semiconductor having a rather
high TC (up to 110 K) [3, 4]. We could call (Ga, Mn)As and related ferromagnetic materials
magnetic semiconductors of ‘the third generation’. A new feature of (Ga, Mn)As is the
compatibility with conventional GaAs-based heterostructure technologies, which offers a new
opportunity to study the optical and electrical properties of the ferromagnetic semiconductors
in well-defined semiconductor devices having well-known band structures. The resistivity
peak and the band splitting due to the exchange interaction have been observed experimentally
in (Ga, Mn)As [4, 5]. However, there are several open questions related to the origin of
magnetism and to the strength of the exchange interaction in (Ga, Mn)As. For instance, the
experimental values for the exchange interaction parameter vary between 0.6 and 3.3 eV [4–7].

The theory of the shift in the optical absorption edge due to the exchange interaction
in ferromagnetic semiconductors was developed first by Haas [8] and Rys et al [9]. Haas’s
result, which was based on the ordinary second-order perturbation theory, turned out to be
divergent at TC . Rys et al [9] applied an infinite-order perturbation theory, and their result
was non-divergent, but valid only in a narrow temperature range above TC in the cases where
the average spin polarization of the magnetic atoms vanishes. The temperature and magnetic
field dependences of the optical absorption edge predicted by these two models were never
compared to experimental data.

In the present paper we develop further the theory of the shift in the band edge caused by
the exchange interaction in ferromagnetic semiconductors by using Matsubara’s temperature
Green functions. We generalize the treatment presented previously by Rys et al [9] to the cases
of non-zero average spin polarization, i.e., to the ferromagnetic temperature region and to the
cases of non-zero applied magnetic fields. This allows us to verify the model by comparing the
model predictions to the measured temperature and magnetic field dependences of the band
edge over the whole temperature range including both paramagnetic and ferromagnetic regions.
First we compare the calculated results to experimental data in the case of the ‘standard’
ferromagnetic semiconductor EuO. Then we apply the theory to the new ferromagnetic
semiconductor (Ga, Mn)As in order to estimate, e.g., the value of the exchange parameter.

2. One-particle Green function

The dependence of the band edges on the magnetic order in the ferromagnetic semiconductors
can be estimated by using the first- and second-order perturbation theory, as shown by Haas [8].
However, since the second-order correction of the band edge depends on the spin correlation
functions, which diverge at T = TC , the result is not valid at temperatures close to the magnetic
ordering temperature. Therefore we have to apply an infinite-order perturbation theory based
on Green functions [10]. In the case of (Ga, Mn)As the application of the second-order
perturbation theory would be questionable also due to the fact that the exchange interaction
between the itinerant holes and the localized magnetic moments is exceptionally large.
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Let us consider a model ferromagnetic semiconductor, where free charge carriers move in
an isotropic conduction or valence band described by a single effective massm∗. Furthermore,
we assume that the charge carrier spins interact strongly with the localized spins of the magnetic
atoms through the exchange interaction. The total Hamiltonian describing the free carrier and
magnetic subsystems as well as their mutual interaction is then given by

Htot = H 0
c +Hexch +Hm (1)

where

H 0
c = �p2

2m∗ (2)

Hexch = −
∑

�R
J (�r − �R)�s · �S �R (3)

Hm = −
∑
�R, �R′
I ( �R, �R′)�S �R · �S �R′ − gLµBB

∑
�R
Sz�R. (4)

H 0
c gives the free carrier energies in the unperturbed band. The operator Hexch describes

the exchange interaction between the free carrier spin �s and the magnetic atom at a lattice
point �R having the total spin �S �R .  = a3

0/4 is the volume of the unit cell in a FCC crystal
lattice having a lattice constant a0, and J (�r − �R) is the exchange integral. Here we assume
that the exchange potential is rapidly varying over the unit cell, i.e., is a δ-like function,
J (�r − �R) = Jexchδ(�r − �R). The operator Hm is a Heisenberg Hamiltonian for the magnetic
subsystem, I ( �R, �R′) being the constant of magnetic coupling between the localized spins S �R .
The last term in (4) gives the Zeeman energy when an external magnetic field B has been
applied.

Now we can calculate the energy spectrum of the perturbed band states from a retarded
Green function for charge carriers [10], which is obtainable from Dyson’s equation in
momentum space:

G = G0

1 −G0 
. (5)

Here G0 and G are the free and perturbed Green functions, respectively, and  is the sum of
all the irreducible self-energy parts obtained in an S-matrix expansion. The Hamiltonian (3) is
treated as the perturbation. In order to utilize the Green function technique we have to express
the total Hamiltonian (1) in the second-quantization form

Ĥtot =
∑
σ

∫
ψ†
σ (�r)Htotψσ (�r) d3�r =

∑
�kσ
E0

�kσ a
†
�kσ a�kσ − 

2

∑
�R

∫
J (�r − �R){S+

�Rψ
†
↓(�r)ψ↑(�r)

+S−
�Rψ

†
↑(�r)ψ↓(�r) + (SzR − 〈Sz〉)[%†

↑(�r)%↑(�r)−%†
↓(�r)%↓(�r)]

}
d3�r +Hm (6)

where

ψ†
σ (�r) = 1√

V

∑
�k
a

†
�kσ e−i�k·�r |σ 〉 ψ(σ �r) = 1√

V

∑
�k
a�kσ ei�k·�r |σ 〉 (7)

are the charge carrier field operators, a†
�kσ and a�kσ being the creation and annihilation operators,

respectively, for a band state |�kσ 〉 and σ = (↑,↓) is the spin index. Here a plane wave
representation normalized to the volume V is used for the band states |�kσ 〉 = V −1/2

exp(i�k · �r)|σ 〉. The spin raising and lowering operators are defined as usual by S+
�R = Sx�R + iSy�R

and S−
�R = Sx�R − iSy�R , respectively.
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The identity Sz�R = Sz�R − 〈Sz〉 + 〈Sz〉 was inserted in (6), which allows us to redefine the
spin polarized band energies as

E0
�kσ = h̄2�k2

2m∗ − x

2
Jexch〈Sz〉(δσ↑ − δσ↓) (8)

where x is a mole fraction of the magnetic atoms, and 〈Sz〉 is the average spin polarization
of the magnetic subsystem. The equation (8) already gives the first-order correction to the
band energies. However, this correction is finite only for non-zero average spin polarization,
i.e., when T < TC or when the external magnetic field has been applied. In order to
describe the band shift at higher temperatures we have to take into account the higher-order
corrections.

In the temperature interaction representation [10] the exchange part of the total
Hamiltonian (6) is given by

Ĥexch(τ ) = −
2

∑
�R

∫
J (�r − �R){S+

�R%
†
↓(�r, τ )%↑(�r, τ ) + S−

�R%
†
↑(�r, τ )%↓(�r, τ )

+ (Sz�R − 〈Sz〉)[%†
↑(�r, τ )%↑(�r, τ )−%†

↓(�r, τ )%↓(�r, τ )]} d3�r (9)

where the field operators in the interaction picture read

%†
σ (�r, τ ) = eĤ0τ/h̄ψ†

σ (�r)e−Ĥ0τ/h̄ %σ (�r, τ ) = eĤ0τ/h̄ψσ (�r)e−Ĥ0τ/h̄. (10)

Here Ĥ0 is the Hamiltonian of the system without the exchange interaction (9).
Matsubara’s temperature Green function is defined as

Gσσ ′(�r, τ ; �r ′, τ ′) = −〈Tτ Ŝ%σ (�r, τ )%†
σ ′(�r ′, τ ′)〉con (11)

where the brackets 〈· · ·〉con denote the thermal average, and we retain only terms corresponding
to connected diagrams in the series expansion. Tτ is a time ordering operator, and the S-matrix
is defined as

Ŝ = exp

[
−

∫ βh̄

0
Ĥexch(τ ) dτ/h̄

]
(12)

where β = 1/kBT . The unperturbed Green function is given by [10]

G0
σσ ′(�r, τ ; �r ′, τ ′) = −〈Tτ%σ (�r, τ )%†

σ ′(�r ′, τ ′)〉 = 1

h̄Vβ

∑
n�k

ei�k·(�r−�r ′)−iωn(τ−τ ′)G0
σσ ′(�k, ωn)

= δσσ ′

h̄Vβ

∑
n�k

ei�k·(�r−�r ′)−iωn(τ−τ ′)

iωn − E0
�kσ /h̄

(13)

where ωn = (2n + 1)π/h̄β (n is an integer), and G0
σσ ′(�k, ωn) is the Fourier transform of

G0
σσ ′(�r, τ ; �r ′, τ ′).

Next we determine the perturbed Green function from (5), and therefore we need an
approximation for the self-energy. The second-order self-energy is obtainable from the second-
order correction in the expansion (11). Inserting the S-matrix (12) into the Green function (11),
and taking into account only the terms proportional to J 2

exch, we get the following second-order
Green function:

G
(2)
σσ ′(�r, τ ; �r ′, τ ′) = −

〈
Tτ

1

2h̄2

∫ βh̄

0
dτ1

∫ βh̄

0
Ĥexch(τ1)Ĥexch(τ2)%σ (�r, τ )%†

σ ′(�r ′, τ ′) dτ2

〉
con

.

(14)
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The relevant thermal average in (14) can be estimated by using the Hamiltonian (9) and retaining
only the terms linear in the spin correlation function ∝〈�S �R · �S �R′ 〉. Using the definition of the
zero-order Green function (13), we can write the terms appearing in (14) in a compact form:

〈Tτ Ĥexch(τ1)Ĥexch(τ2)%σ (�r, τ )%†
σ ′(�r ′, τ ′)〉con

= 2

2

∑
�R, �R′

∫
d3x

∫
d3x ′ J (�x − �R)J (�x ′ − �R′){.xx( �R, �R′)

× G0
↑σ (�x, τ1; �r, τ )G0

↓↓(�x, τ1; �x ′, τ2)G
0
↑σ ′(�x ′, τ2; �r ′, τ ′)

+ .yy( �R, �R′)G0
↓σ (�x, τ1; �r, τ )G0

↑↑(�x, τ1; �x ′, τ2)G
0
↓σ ′(�x ′, τ2; �r ′, τ ′)

+ .zz( �R, �R′)G0
σσ ′(�x, τ1; �r, τ )G0

σσ ′(�x, τ1; �x ′, τ2)G
0
σσ ′(�x ′, τ2; �r ′, τ ′)} (15)

where the spin correlation functions are defined as .( �R, �R′) = 〈(�S �R − 〈�S �R〉) · (�S �R′ − 〈�S �R′ 〉)〉.
Using the familiar sum rule

∑
exp[i(�k − �p) · �R] = δ�k, �pN over the lattice sites �R, and

inserting (15) into (14), we obtain the second-order Green function in the momentum space as
follows:

G
(2)
σσ ′(�k, ωn) = G0

↑σ ′(�k, ωn)
[
J 2
exch

4N

∑
�q

.xx(�q)δ↑σ ′

ih̄ωn − E0
�k−�q,↓

]
G0

↑σ ′(�k, ωn)

+ G0
↓σ ′(�k, ωn)

[
J 2
exch

4N

∑
�q

.yy(�q)δ↓σ ′

ih̄ωn − E0
�k−�q,↑

]
G0

↓σ ′(�k, ωn)

+ G0
σσ ′(�k, ωn)

[
J 2
exch

4N

∑
�q

.zz(�q)δσσ ′

ih̄ωn − E0
�k−�q,σ

]
G0
σσ ′(�k, ωn) (16)

where .(�q) is the Fourier transform of the spin correlation function.
Now we can identify the second-order self-energy from (16):

 
(2)
σσ ′(�k, ωn) = J 2

exch

4N
δσσ ′

∑
�q

[
.xx(�q)δσ↑

ih̄ωn − E0
�k−�q,↓

+
.yy(�q)δ↓σ ′

ih̄ωn − E0
�k−�q,↑

+
.zz(�q)δσσ ′

ih̄ωn − E0
�k−�q,σ

]
. (17)

The first two terms in (17) are related to spin-flip transitions due the exchange interaction (9),
whereas the last term describes the interaction without spin-flip processes. By using the Dyson
equation (5), we can finally solve the perturbed Green function, which reads

Gσσ ′(�k, ωn) = h̄δσσ ′

ih̄ωn − E0
�kσ − (2)σσ ′(�k, ωn)

. (18)

The poles of the real part of the denominator in (18) give the perturbed band energy:

E�kσ = E0
�kσ +

J 2
exch

4N ′
∑

�q

[
.xx(�q)δσ↑
E�kσ − E0

�k−�q,↓
+
.yy(�q)δ↓σ ′

E�kσ − E0
�k−�q,↑

+
.zz(�q)

E�kσ − E0
�k−�q,σ

]
. (19)

Notice that the first-order correction is included in (19) through the equation (8). Haas [8] has
obtained an energy correction similar to (19) by using the ordinary second-order perturbation
theory. However, since only the first-order corrections (8) appeared in the denominator of
the J 2

exch-term, Haas’s result turned out to be divergent at TC due to the divergence of the
spin correlation functions (see below). Our result (19) shows the advantage of the infinite-
order perturbation theory based on the Green function technique: the perturbed band energy
E�kσ to be calculated appears in the denominator of the J 2

exch-term in (19), which removes
the divergence at TC . When the net spin polarization of the magnetic subsystem vanishes,
〈Sz〉 = 0, equation (19) reduces to the result derived previously by Rys et al [9]. However,
their result is valid only in the paramagnetic region, i.e., when 〈Sz〉 = 0, whereas our result (19)
is valid over the whole temperature range and also in the case of non-zero magnetic fields.
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3. Calculation of the band shift

In order to calculate the changes of the band edge as a function of temperature and applied
magnetic field from (19), we have to know the wavevector dependence of the spin correlation
functions .(�q) = .xx(�q) + .yy(�q) + .zz(�q). Expressions for these functions can be derived,
e.g., by applying the procedure proposed by Sinkkonen [11].

In the molecular field approximation (MFA) the average spin polarization of the magnetic
moments is given by

N−1
∑

�R
〈Sz�R〉 = x〈Sz〉 = xSBS(y) = x

(
2S + 1

2

)
coth

(
2S + 1

2S
y

)
− x

2
coth

(
y

2S

)
(20)

where BS(y) is the Brillouin function with

y = gLµBS

kBT
Beff (21)

and the effective molecular field acting on the spin �S �R is obtained from the magnetic
Hamiltonian (4):

Beff = B +
2I (�q = 0)〈Sz〉

gLµB
. (22)

I (�q) is the Fourier transform of the magnetic coupling parameter I ( �R, �R′) in (4), and in the
case of the FCC lattice it is given by [12]

I (�q) = 3kBTC
2S(S + 1)

[
1 − a2

0q
2

12

]
. (23)

When calculating the spin correlation functions in the case of DMSs by using the method
of [11], we have to take into account that a magnetic moment is found at a lattice site �R with
a probability x (as in the lattice summation in (20)). Then we have

.xx(�q) = .yy(�q) = xS2BS(y)/y

1 − 2S2I (�q)BS(y)/y
kBT

.zz(�q) = xS2 ∂BS(y)/∂y

1 − 2S2I (�q) ∂BS(y)/∂y
kBT

.

(24)

The temperature dependence of the spin correlation functions (24) shows a divergence at TC ,
. ∝ (T − TC)−1. This behaviour is shown in figure 1, where .zz(�q = 0) is plotted as a
function of temperature in various magnetic fields. The material parameters were those of
EuO (see below).

By using the wavevector-dependent spin correlation functions (24) and the magnetic
coupling parameter (23), we can integrate in a closed form over the wavevector q in (19).
Assuming a parabolic band we get the following expression for the band edge E↑(�k = 0) in
the case of the spin-up charge carriers:

E↑(�k = 0) = −3
2

− xJ 2
exchm∗
8h̄2π

[F1(E↑(�k = 0)) + F2(E↑(�k = 0))] (25)

where

F1(E↑(�k = 0)) = A

c

[√
b

c
+

√
2m∗
h̄2 Re

{
|E↑(�k = 0)| +

3

2

}]−1

(26)

F2(E↑(�k = 0)) = D

f

[√
e

f
+

√
2m∗
h̄2

{
|E↑(�k = 0)| − 3

2

}]−1

(27)
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Figure 1. Spin correlation function .zz(�q = 0) versus temperature in various magnetic fields in
EuO.

with A = S2BS(y)/y, D = S2 ∂BS(y)/∂y, and 3 = xJexch〈Sz(T , B))〉, and

b = 1 − 2S2I (�q = 0)BS(y)/y

kBT
(28)

c = S2I (�q = 0)a2
0BS(y)/y

6kBT
(29)

e = 1 − 2S2I (�q = 0) ∂BS(y)/∂y

kBT
(30)

f = S2I (�q = 0)a2
0 ∂BS(y)/∂y

6kBT
. (31)

From (25) the band edge E↑(�k = 0) can be solved self-consistently by using numerical
iteration. An expression for the spin-down carriers can be derived simply by replacing 3
by −3 in (25)–(27).

4. Numerical results for EuO and GaMnAs

In order to verify the theory of the band shift developed above we can apply it to the experimental
data obtained in the case of the ‘standard’ ferromagnetic semiconductor EuO. In EuO the
magnetic electrons occupy a well-localized 4f level and the charge carriers move in a broad
s-type conduction band. When the magnetic ordering occurs, i.e., when 〈Sz〉 �= 0, the energy
of the seven 4f electrons does not change, but the conduction electrons become spin polarized
according to (8). Therefore the measured red-shift of the optical absorption edge below TC or
in applied magnetic fields is believed to be related directly to the shift of the conduction band
edge for spin-up electrons in EuO [1].

Figure 2 shows the comparison of the results calculated from (25) to the measured [1] band
shift at B = 0 and 1.35 T. The theoretical results agreed reasonably well with the measured
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Figure 2. Calculated and measured band shift in EuO. The solid curve has been calculated from (25)
at B = 0 T and the dashed curve at B = 1.35 T. The experimental data were taken from [1]: the
white dots were measured at B = 0 T and the black dots at B = 1.35 T.

ones, when the following material parameters were used: Jexch = 0.223 eV, TC = 65 K,
a0 = 5.15 Å, S = 7/2, and m∗ = 1.0 m0. These values are almost the same as those
mentioned for EuO in [1]. However, the exchange interaction parameter Jexchis slightly larger
in our case than the value 0.18 eV estimated in [1]. This is probably due to the fact that we took
into account the higher-order corrections in our expression (25), whereas the value mentioned
in [1] was most probably estimated from the first-order result (8).

The higher-order corrections to the band edge in (25) give a non-zero contribution to the
band edge ≈0.1 eV already in the paramagnetic region T > TC , where the net spin polarization
(and consequently the first-order result 3/2) vanishes at B = 0 T. In the calculated results of
figure 2 there is a small blue-shift ≈10−4 eV K−1 as temperature decreases in the paramagnetic
region T � TC . This is of the same order of magnitude as the measured blue-shift in EuO [1].
Usually this behaviour is explained by a lattice dilatation and an electron–phonon interaction.
However, our calculations show that there also may be a magnetic contribution related to the
temperature dependence of the spin correlation functions shown in figure 1. At temperatures
close toTC the spin correlation functions increase strongly, as shown in figure 1. This behaviour
together with a strong increase of the net magnetization at T < TC result in a large red-shift
in the band edge near the magnetic ordering temperature. Also the red-shift is well described
by our theory, as shown in figure 2. The significance of the higher-order terms in (25) is
clearly shown at temperatures close to TC in the paramagnetic region, where the large increase
in the spin correlation functions (see figure 1) in the higher-order terms causes a strong red-
shift already at temperatures where the average spin polarization and, thereby, the first-order
band shift (8) vanish at B = 0 T. The application of the external magnetic field increases
strongly the net magnetization at temperatures close to TC . Consequently, the band edge shifts
to lower energies, as shown both in the calculated and experimental results of figure 2.

In the recently found ferromagnetic semiconductor (Ga, Mn)As the exchange interaction
parameter Jexch for electrons in the conduction band is of the same order of magnitude as the
one in EuO [5, 13]. However, the exchange parameter for holes in the valence band seems
to be an order of magnitude larger, Jexch ≈ 2 eV. This large value emphasizes the higher-
order corrections in (25), and therefore the temperature and magnetic field dependences of
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Figure 3. Calculated shift of the band edge for holes in the valence band of (Ga, Mn)As as a
function of temperature in various magnetic fields.

the band edge may become dominated by the spin correlation functions and not by the net
magnetization as in the case of EuO. In (Ga, Mn)As the itinerant charge carriers move in
the well-characterized conduction and valence bands, and the magnetic electrons have been
localized at the 3d level of the Mn atoms. Figure 3 shows the band edge for holes in the valence
band of (Ga, Mn)As as a function of temperature in various magnetic fields. The band edge
was calculated from (25) by using the following material parameters [4, 13]: Jexch = 2.4 eV,
m∗ = 0.5 m0 (heavy holes), a0 = 5.65 Å, TC = 110 K, S = 5/2, and x = 0.053.

Figure 3 shows that in the paramagnetic region at temperatures close to the critical
temperature there is a red-shift in energy with decreasing temperature or with increasing
magnetic field, just as in the case of EuO. However, below TC a blue-shift appears both with
decreasing temperature and with increasing magnetic field. This is a new feature predicted by
our model, which has not been found in the conventional magnetic semiconductors. The blue-
shift is a result of the exceptionally large exchange interaction parameter, which emphasizes
the higher-order corrections in (25): in the conventional ferromagnetic semiconductors such
as EuO, the first-order result (8) dominates, and therefore the band shift is determined by the
temperature and magnetic field dependences of the net magnetization. However, in the case of
the large exchange interaction parameter the spin correlation functions in the higher-order terms
of (19) (and (25)) start to dominate, and then the temperature and magnetic field dependences
of the band edge are more related to those of the spin correlation functions. Figure 1 shows
that below TC the spin correlation functions decrease strongly with decreasing temperature
and with increasing magnetic field. This explains the anomalous behaviour of the band edge
in the ferromagnetic region in figure 3.

The blue-shift predicted by our model in figure 3 has not yet been studied experimentally
in bulk (Ga, Mn)As. However, there are some experimental magnetoabsorption data on the
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Figure 4. Experimental and calculated (solid curve) absorption edge splitting in (Ga, Mn)As versus
temperature at B = 0.02 T. The experimental data were taken from [5].

ferromagnetic Ga1−xMnxAs epilayers [5]. Figure 4 shows the experimental and calculated
absorption edge splitting versus temperature in Ga1−xMnxAs at B = 0.02 T. The theoretical
result was calculated from (25) (and the same kind of equation for the spin-down carriers)
by using the following material parameters [5]: TC = 39 K and x = 0.032. The exchange
parameter Jexch = 1.4 eV was used as a fitting parameter. This value is slightly smaller than the
estimate 1.9–2.4 eV published by Szczytko et al [5], when they used the first-order result (8)
only. This difference is partly explained by the fact that we neglected the band splitting of
the conduction band, which should be taken into account when the absorption edge splitting
is estimated. However, since the exchange parameter for the conduction electrons is an order
of magnitude smaller than the one for holes, and since the experimental errors in figure 4 are
large, the fitting of the calculated results to the experimental data of figure 4 would have been
inaccurate even if the conduction band splitting had been included. Therefore the good fit
shown in figure 4 cannot be considered any verification of the model, and more experimental
data on magnetoabsorption in bulk (Ga, Mn)As close to TC are needed in order to verify, e.g.,
the behaviour predicted by our model in figure 3.

5. Conclusions

The infinite-order perturbation theory for the exchange interaction between the itinerant carrier
spins and the localized magnetic moments in the ferromagnetic semiconductors allows us
to calculate the band shift both in the paramagnetic and ferromagnetic regions in various
magnetic fields. The theory describes well the temperature and magnetic field dependences
of the band shift in the conventional magnetic semiconductors such as EuO. Our results
show the importance of the higher-order corrections to the band edge when extracting the
exchange interaction parameter from the measured red-shift. Also the theory predicts that in
the new ferromagnetic semiconductor (Ga, Mn)As the exceptionally large exchange interaction
between the holes and the magnetic 3d electrons results in an anomalous blue-shift in the band
edge in the ferromagnetic region. This blue-shift has not yet been measured in bulk (Ga, Mn)As,
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and our present theoretical results should encourage experimentalists to study the band shift
more carefully at temperatures close to the critical temperature.
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